
An Adaptive Strategy for Scheduling Data-Intensive
Applications in Grid Environments

Wantao Liu1, Rajkumar Kettimuthu3,4, Bo Li1, Ian Foster2,3,4

 1 School of Computer Science and Engineering, Beihang University, Beijing, China
 2Department of Computer Science, The University of Chicago, Chicago, IL USA

 3Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL USA

 4 Computation Institute, The University of Chicago, Chicago, IL USA
liuwt@act.buaa.edu.cn, kettimut@mcs.anl.gov, libo@act.buaa.edu.cn,

foster@anl.gov

Abstract
Data-intensive applications are becoming increasingly
common in Grid environments. These applications
require enormous volume of data for the computation.
Most conventional meta-scheduling approaches are
aimed at computation intensive application and they do
not take data requirement of the applications into
account, thus leading to poor performance. Efficient
scheduling of data-intensive applications in Grid
environments is a challenging problem. In addition to
process utilization and average turnaround time, it is
important to consider the worst-case turnaround time in
evaluating the performance of Grid scheduling
strategies. In this paper, we propose an adaptive
scheduling scheme that takes into account both the
computational requirements and the data requirements
of the jobs while making scheduling decisions. In our
scheme, data transfer is viewed in par with computation
and explicitly considered when scheduling. Jobs are
dispatched to the sites that are optimal in terms of both
data transfer time and computation time. In addition,
our scheme overlaps a job’s data transfer time with its
own queuing time and other jobs’ computation time as
much as possible. Trace-based simulations show that the
proposed scheme can gain significant performance
benefits for data-intensive jobs.

I. INTRODUCTION
 In scientific research communities, more and
more large-scale scientific experiments generate
and process data on the order of terabytes or even
petabytes. For example, four high energy physics
experiments at CERN produce and process several
petabytes of data per year, and this process is
expected to last 15 to 20 years [1]. These “data-
intensive applications” require large-scale data
storage and computation resources, which typical-
ly are geographically distributed. The applications
usually need to move data to the computation site
for processing. Data movement time can range
from a couple of seconds to hours or even days [2].
 Grid computing [3] enables users to harness
distributed heterogeneous resources to solve com-
plex problems. Metaschedulers [4][15] play a key
role in Grid computing, dispatching jobs submitted
to the Grid to different sites for execution and
monitoring their running.

 Conventional metascheduling approaches con-
sider computation requirements alone to schedule
jobs and not consider data requirements in which
case the data movement should be coupled to-
gether with the computation and thus the com-
putational resources need to be allocated during
data transfer. This approach has several draw-
backs. Typically, the computational sites on the
Grid have dedicated nodes for doing data transfers,
and a file system that is shared by the com-
putational nodes and the data servers. For example,
the individual computational sites on national Grid
infrastructures such as TeraGrid, Open Science
Grid run GridFTP on dedicated nodes for data
transfer and have a shared parallel file system that
is accessible to the GridFTP servers as well the
computational nodes. Thus, the data transfer does
not require any resources on the compute nodes.
So, when the metascheduler is not data aware and
the data movement is done as part of the com-
putation, the computational resources are essential-
ly wasted for the duration of the data transfer.
Also, in Grid environments network conditions
vary a lot for different sites. Without knowledge of
data requirements, the metascheduler cannot make
an optimal selection of the computational resource
for the jobs, which leads to poor performance, like
low resource utilization, long job turn around time.
 In some metaschedulers that are data aware such
as GridWay [15] and DAGMan [16], the data is
transferred by the metascheduler to a com-
putational site before the job is submitted to the
local scheduler. This approach improves resource
utilization but has several drawbacks as well.
When a computational site is picked, it is picked
only based on the computation aspects of the job
and not based on the data aspects. A site that will
take the longest time (among all the available
sites) to transfer the data might be picked. Also,
the job is not queued at the local site until the data
transfer is done.
 We propose an adaptive metascheduling scheme
to improve the turnaround time of data-intensive
applications and to optimize the resource uti-
lization. There are two key ideas in our scheme: 1)
take into account both the computational require-
ments and the data requirements of the jobs while

making scheduling decisions, and try to get best
resources for a job based on that comprehensive
consideration; 2) overlap the data transfer time for
a job with the queuing time of the job and/or the
computation time of other jobs. Specifically
speaking, in our scheme, data transfer is viewed
equally with computation and explicitly considered
when scheduling. Jobs are dispatched to the sites
that can finish it earliest based on both the data
transfer time and computation time. In addition, as
soon as a job is put into the queue of a local
scheduler, data transfer is started immediately so
that the job’s data transfer time is overlapped with
its own queuing time and other jobs’ computation
time to a maximum extent.
 The paper is organized as follows. In Section
2, we review previous work related in scheduling
of data-intensive applications; In Section 3, the
proposed metascheduling scheme is described and
analyzed; trace-based simulation results and
analysis are presented in Section 4. We present our
conclusions and describe future work in Section 5.

II. RELATED WORK
 Subramani et al. [5] proposed a greedy meta-
scheduling algorithm based on multiple simul-
taneous requests. The metascheduler identifies the
sites that can start the job earliest. This approach is
suitable only for homogeneous resources, howe-
ver, and does not take data requirements into
account.
 In [6], Wäldrich et al. proposed a meta-
scheduler that co-allocates arbitrary types of re-
sources; the goal of this work is to allocate
multiple kinds of resource with specific QoS re-
quirements in a certain sequence with con-
sideration of heterogeneity and different site
policies. However, this work has no special
consideration for data-intensive applications.
 Ranganathan et al. [7] developed a family of
job-scheduling and data-movement algorithms for
data-intensive applications. Data replica is used to
improve performance. In this work, computation
scheduling and data scheduling (data replication
strategies) are independent; they do not incur-
porate with each other to get best resources for a
job.
 Chameleon [8] is a resource broker developed
for data grid environment. It proposes a family of
cost models in terms of job-turnaround time. When
a job is submitted, the scheduler uses the cost
models to decide how to schedule the job; either
the application code or data can be moved to get
the best scheduling performance.
 Bent et al. [9] discussed the scheduling of a
collection of jobs with data requirements. They
extended the Condor ClassAd mechanism to
enable the worker node to include information on
the files available on the node. This work is

designed for cluster environments, however; it is
not suitable for more distributed Grid computing.
In addition, their goal is to maximize throughput
while minimizing data movement costs, whereas
our goal is to improve job turnaround time.
 Venugopal et al. [10] developed a Grid service
broker for data-intensive applications. Their
objective is similar with that of our work in this
paper, and they considered the situation where
there are multiple replicas for a data file. The
computation resource and data resource pair is also
selected in order to minimize job turnaround time.
However, they don’t consider overlapping the data
transfer time with queuing time/computation time.
 In job shop scheduling [11][12], both job
accounts and machine accounts are finite. Each job
is composed of several operations, which must be
processed in an orderly fashion. A schedule is a
mapping from operations to machines. Job shop
scheduling is NP-complete, and heuristics are
widely used. Though the data stage-in, compu-
tation and data stage-out can be thought of as
sequential operations of a data intensive job,
multiple data movement operations can be carried
out simultaneously on the same resource and thus
the scheduling of data intensive jobs does not
directly map to job shop scheduling.
 In data diffusion [13], when the dispatcher
receives a job, it attempts to dispatch this job to a
resource that has cached the data needed by the
job. The job will first try to get data that is not
cached on the execution resource from its peer
resources. Only if no cache is available does the
job get its data from persistent storage. Often,
however, each job requires different data for
processing; cached data is not used by subsequent
jobs. In that case, jobs have to request data from
the data storage site, and the scheduling policy in
data diffusion is not able to improve performance
much.
 Stork [2][14] considered data placement acti-
vity a first-class citizen in the Grid. It is capable of
queuing, scheduling, monitoring and managing
data placement activities. Stork accepts data
placement jobs and executes them according to a
given scheduling policy (e.g., FCFS, shortest job
first, random). Stork is only a data placement
scheduler, it interacts with execution planner and
batch scheduler for job scheduling. It can not
overlap data placement activity with computation
activity.

III. PROPOSED SCHEDULING SCHEME
 Our meta-scheduling strategy takes into account
not only computation resource requirements but
also data requirements (storage space, network
condition, etc.) when making scheduling decisions.
It ensures that the resource that possesses very
powerful processors but bad network conditions to

the data source is not selected. Furthermore, data is
staged into the computational site while the job is
waiting in the queue, and staged out after the
computation resource is released.
 Figure 1 illustrates the benefits of the proposed
idea from individual job’s perspective; it tries to
overlap a job’s data transfer time with its queuing
time. Figure 1(a) shows the conventional execution
model in which the scheduler is not data aware.
The job waits in the queue until it gets enough
resources to execute. Once the job starts, it fetches
the input data from a remote location, performs the
computation, and transfers the output data to a
remote location. Since the data stage-in, stage-out
is conducted by the job itself, computational
resources are allocated to the job even during the
data movement. Thus, the computational resources
are wasted during the data transfer. Figure 1(b)
shows the approach in which data is staged in
before job submission by the metascheduler and
staged out by metascheduler after job completion.
It can improve resource utilization than the
previous one. However, this approach does not
take data requirements into account when making
scheduling decisions; queuing time is not utilized
as well.
 Figure 1(c) shows the execution model of our
proposed scheme. Here, scheduling decisions are
made based on both computation requirements and
data requirements. The data stage-in time for a job
is overlapped with its own queuing time and with
the computation time of other jobs. The data stage-
out time is overlapped with the computation time
of other jobs. Our scheme attempts to reduce the
job turnaround time by decoupling the data stage-
in and stage-out from the job execution and at the
same time tries to maximize the utilization of
computational resources. It calculates the data
transfer time for each computational site based on
the prevailing available bandwidth and uses that
time to select the appropriate resource for the jobs.
 The benefits of the proposed scheme from the
resource perspective are illustrated in Figure 2. For
simplicity, let us assume that all jobs in this
illustration require all processors of the compu-
tation site. We can see that job2 can conduct its
data transfer when job1 is running; job3 can
conduct its data transfer when job1 and job2 are
running, since now data transfer is not a part of job
execution but is done by the scheduler, and the
computational resources are not allocated during
data transfer. As a result, the turnaround time of
job is shortened, and resource utilization is also
improved.

Queueing Data Transfer Computation

Job Execution

Queueing and data
transfer Computation

Job Execution

Saved Time

Data Transfer

Data Transfer

QueueingData Transfer Computation

Job Execution

Data Transfer

(a) no data-aware execution model

(b) data-aware, but scheduling decision
does not consider data resource and

queuing time is not utilized

(c) data-aware, and scheduling decision
considers data resource and queuing time is

utilized to stage in data
Figure 1. From the individual job’s perspective,
the proposed scheme can overlap the queuing

time and data transfer time.

 Figure 3 demonstrates the interaction between
the metascheduler and local scheduler. When a job
is submitted to the metascheduler, the following
information is required: input data location, input
data size, output data location, output data size (if
known), computational requirements, and estimat-
ed runtime. The metascheduler first passes the job
description to each local scheduler and queries for
an estimate of when the job can be finished. Using
the information received from the metascheduler,
each local scheduler first estimates available
bandwidth from local site to the data source
(where the input data required for the computation
is located) and to the data sink (where the data
generated by the computation needs to be trans-
ferred to). This estimate can be obtained either by
using historical information or through a network
monitoring services such as perfSONAR [23] or
NWS [24]. It’s notable that due to highly dynamic
nature of real network, it’s impossible to predict
the data transfer time accurately. It’s quite possible
that data transfer completes earlier or later than
expected. We will consider this factor in our future
work. Currently, we assume that available
bandwidth remains static for the duration of a
single transfer. It certainly varies from one transfer
to another.
 Assume job J is submitted to the metascheduler
at time T0. Dstagein, Dstageout are denoted as input
data size and output data size respectively. Let
Bstagein be the estimated stage-in bandwidth and
Bstageout

 T

be the estimated stage-out bandwidth.
Time to stage the data in and out is calculated as

stagein = Dstagein /Bstagein
 T

 (1)
stageout = Dstageout /Bstageout

Earliest time the job can be started at the local site
can be expressed as

(2)

 T1 = T0 + Tstagein+δ (3)

whereδis the time it takes for the metascheduler
to dispatch the job to a local scheduler.
Let Tstart (Tstart>= T1)

T

be the guaranteed start time
of the job. Then the earliest finish time for the job
is

finish = Tstart + Tuser_est + Tstageout
where T

 (4)
user_est is the estimated run time for the job.

Tfinish

 is returned to the metascheduler.

Queueing and data
transfer Computation

Queueing and data transfer Computation

Queueing and data transfer Computation

Job1

Job2

Job3

Data transfer

Data transfer

Data transfer

Figure 2. From the resource perspective, the
proposed scheme can overlap data transfer
time for a job with the computation time of

other jobs.

Meta-Scheduler

Local Scheduler Local SchedulerLocal Scheduler Local Scheduler

Job submission: comutation
requirement + data requirement

Data Storage

Data Transfer

Query earliest
finish time

Query response

Dispatch job

Figure 3. Interaction between the
metascheduler and local scheduler.

 After collecting a response from each local
scheduler, the metascheduler picks the site that can
finish the job earliest and dispatches the job to that
site. Upon receiving the job, the local scheduler
initiates the data movement immediately and
makes an advance reservation for the job.
 Backfilling [17][18][19] is a widely used and
effective optimization approach in scheduling. The
backfill algorithm in our scheme takes data move-
ment into account. When a job has a chance to be
backfilled, its required data may not have been
transferred completely. Under such circumstances,
the backfill algorithm should check whether the
idle resource hole is big enough to accommodate
the computation time and the remaining data tran-
sfer time. If it is big enough, the job will be
successfully backfilled; otherwise, the job will not
be backfilled.
 Since our metascheduling scheme values job
turnaround time most, it also backfills jobs whose
data movement is in progress, in order to have the
chance to finish the job as soon as possible. The

cost is that some processor time will be wasted. On
the other hand, because of the separation of data
movement and computation, the processor time
required by the job is shorter than that of
conventional approaches. Hence, it is easier to find
a backfill opportunity, especially for jobs whose
computation time is short and data movement time
is long. To verify the effectiveness of this backfill
policy, we experimentally compared it with a
backfill policy that backfills only those jobs that
either have no data requirements or the entire data
required has been transferred already. The results
showed that our backfill policy can get up to 7%
improvement in average turnaround time, and only
1% loss in CPU utilization.

IV. PERFORMANCE EVALUATION
 In this section we compare our scheme
(finish_time_data_aware) with two other meta-
scheduling schemes. One scheme is data aware, as
is our scheme, and selects the site that can finish
the job earliest. It considers the data transfer time
when determining the finish time for a job.
However, the data transfer and computation still
are tightly coupled – there is no overlap between
data transfer time and queuing time or computation
time. It is referred as “finish_time_no_overlap” in
the figures. The other scheme is not data aware
and picks the site that can start the job earliest. It is
referred to as “start_time_no_data_aware” in the
graphs.

A. Experiment Setup
 Our performance evaluation uses a locally
developed simulator that simulates the behavior of
the metascheduler and local scheduler. This
simulator incorporated conservative backfill and
advance reservation techniques, and also simulates
data movement. For simplicity sake, we do not
split the data requirements of the jobs into input
(stage-in) and output (stage-out) components in the
experiments. Rather, we consider all the data
requirements as input only.
 The three metascheduling schemes are evaluated
by using two realistic workload traces from
Feitelson’s logs [20]. One trace is from the San
Diego Supercomputing Center (SDSC) and the
other from the Cornell Theory Center (CTC). We
use a 5000-job contiguous subset of the traces. The
number of processors required for the jobs in CTC
and SDSC traces ranged from 1 to 129 and 1 to
128, respectively. The execution times for the
SDSC trace ranged from 1 second to 20 hours; for
the CTC trace it ranged from 1 second to 4 days.
 Five computation sites are simulated, having
130, 64, 64, 128, and 32 nodes, respectively. The
available bandwidth is calculated as a random
value in the range between 10 Mbit/s and 100
Mbit/s. Data transfer time for a job is calculated as

Ttransfer

B. Evaluation Results

 = data_size / available_bandwidth. Since
the traces did not have data requirements for the
jobs, we assume the data requirements for the jobs
to be between 10 MB and 10 GB for one set of
experiments. Since large-scale science applications
deal with enormous volumes of data (on the order
of terabytes and even petabytes), we evaluated
various schemes for a larger data size range from
10 MB to 800 GB. In all experiments, we assume
50% of the jobs have data movement require-
ments. The proposed scheme is represented as
“finish_time_data_aware” in the figures. Simu-
lation studies were performed under both normal
and high loads. A high load condition was
simulated by increasing the runtime of the jobs by
a factor of 3. We use average turnaround time and
utilization metrics to compare the three schemes.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Av
er

ag
e

Tu
rn

ar
ou

nd
 T

im
e(

Se
co

nd
s)

 finish_time_data_aware
 finish_time_no_overlap
 start_time_no_data_aware

normal load heavy load
0

50000

100000

150000

200000

250000

300000

350000

400000

 (a) Data requirements of the jobs are in the
range of 10 MB to 10 GB

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Av
er

ag
e

Tu
rn

ar
ou

nd
 T

im
e(

Se
co

nd
s)

 finish_time_data_aware
 finish_time_no_overlap
 start_time_no_data_aware

normal load heavy load
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

 (b) Data requirements of the jobs are in the
range of 10 MB to 800 GB

Figure 4. Comparison of average turnaround
time for the three schemes – CTC trace.

 Figure 4 shows the average turnaround time of
different schemes under both normal and heavy
load for two different ranges of data requirements.
In Figures 4 and 6, the values for the normal load

bars is represented in the left y axis, and the values
for the high load bars is represented in the right y
axis. It is to be noted that only 50% of the jobs
have data transfer requirements. We note that our
proposed scheme outperforms the other two
schemes, but when the data needs of the jobs is in
the range of 10 MB to 10 GB, the improvement is
not remarkable. The reason is that the computation
time is dominant in this situation, and the data
transfer time is small relative to the computation
time. On the other hand, when the data needs of
the jobs are in range of 10 MB to 800 GB, our
scheme markedly outperforms the other two
schemes. The average turnaround time of our
scheme (“finish_time_data_aware”) is only about
10% of that of “start_time_no_data_aware” and
50% of that of “finish_time_no_overlap” scheme.
The reason is that the data movement time is
considerably more and there is much more overlap
between queuing time, computation time and data
transfer time within our scheme and thus
performance gain is significant.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ut
iliz

at
io

n

 finish_time_data_aware
 finish_time_no_overlap
 start_time_no_data_aware

normal load heavy load

 (a) Data requirements of the jobs are in the
range of 10 MB to 10 GB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ut
iliz

at
io

n

 finish_time_data_aware
 finish_time_no_overlap
 start_time_no_data_aware

normal load heavy load

(b) Data requirements of the jobs are in the

range of 10 MB to 800 GB

Figure 5. Comparison of processor utilization
for the three schemes – CTC trace.

 Figure 5 depicts the CPU utilization for the
three schemes. Utilization is defined as follows:

(total processing time for all jobs)/
∑(makespan*number of processors in local
computational site). We note that the utilization is
better for our scheme, and the difference is
significant when the load is heavy or when the data
needs are higher.
 From Figure 4, we observe that “finish_time-
_data_aware” scheme significantly improves the
average turnaround time. But from a practical
point of view, the worst-case turnaround time is
also important. A scheme that improves the
average turnaround time but makes the worst-case
turnaround time worse is not desirable.

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000
220000
240000
260000
280000

W
or

st
 T

ur
na

ro
un

d
Ti

m
e(

Se
co

nd
s)

 finish_time_data_aware
 finish_time_no_overlap
 start_time_no_data_aware

normal load heavy load
0

500000

1000000

1500000

2000000

2500000

3000000

(a) Data requirements of the jobs are in the

range of 10 MB to 10 GB

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

W
or

st
 T

ur
na

ro
un

d
Ti

m
e(

Se
co

nd
s)

 finish_time_data_aware
 finish_time_no_overlap
 start_time_no_data_aware

normal load heavy load
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

(b) Data requirements of the jobs are in the

range of 10 MB to 800 GB
Figure 6. Comparison of worst turnaround time

for the three schemes – CTC trace.

 Figure 6 compares the worst-case turnaround
time of the three schemes. We note that worst-case
turnaround time for our scheme is much better
than that for the other two schemes. Since
“start_time_no_data_aware” simply picks up a site
that is able to start the job earliest, without
considering the finish time or the data needs, it
may select a site that performs poorly, and thus the
worst turnaround time for this scheme is far worse
than that for the other two schemes.

C. Impact of Accuracy of User Estimation
Runtime

 When a job is submitted, the job execution time
specified by the user is generally much larger than
the time actually needed [21][22]. To evaluate the
impact of accuracy of user estimation to job
execution time in the context of data-intensive
application, we carried out the following experi-
ments. We set the user estimation runtime equals
to the actual execution time and compared the
results with the previous ones, in which the user
estimation is not equal to actual execution time.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Av
er

ag
e

Tu
rn

ar
ou

nd
 T

im
e(

Se
co

nd
s)

 finish_time_data_aware
 finish_time_no_overlap
 start_time_no_datra_aware

est = exec est != exec

(a) Data requirements of the jobs are in the

range of 10 MB to 10 GB

exec=est exec!=est
0

50000

100000

150000

200000

250000

Av
er

ag
e

Tu
rn

ar
ou

nd
 T

im
e(

Se
co

nd
)

 finish_time_data_aware
 finish_time_no_overlap
 start_time_no_data_aware

(b) Data requirements of the jobs are in the

range of 10 MB to 800 GB

Figure 7. Impact of user-estimation inaccuracy
for the three schemes – CTC trace.

 Figure 7 compares the performance of the three
schemes when the user estimates are inaccurate
with the performance when the user estimates are
accurate. We see that the performance difference
among the three schemes in the inaccurate estimate
case is similar to that of the accurate estimate case.
Figure 7b also shows that the performance of
“start_time_no_data_aware” scheme is better
when the user estimates are inaccurate. The reason
is that the higher runtime for the jobs (as the data

transfer time is embedded in the job runtime for
the “start_time_no_data_aware”) causes an incr-
eased load, and the inaccurate user-estimate
improves the backfilling chances for the smaller
jobs especially under heavy load.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000
1100000
1200000
1300000
1400000
1500000
1600000
1700000
1800000
1900000

Av
er

ag
e

Tu
rn

ar
ou

nd
 T

im
e(

Se
co

nd
s)

 [10MB, 10GB]
 [10MB, 200GB]
 [10MB, 400GB]
 [10MB, 800GB]

finish_time_
data_aware

finish_time_
no_overlap

start_time_no
_data_aware

.Figure 8. Comparison of average turnaround
time for different data sizes with heavy load –

CTC trace

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000
1100000
1200000
1300000
1400000
1500000
1600000
1700000
1800000
1900000

Av
er

ag
e

Tu
rn

ar
ou

nd
 T

im
e(

Se
co

nd
s)

 finish_time_data_aware
 finish_time_no_overlap
 start_time_no_data_aware

25% jobs 50% jobs 100% jobs

Figure 9. Comparison of average turnaround
time of the three schemes for varying
proportions of jobs with data requirements –
CTC trace.

0

100000

200000

300000

400000

500000

600000

 finish_time_data_aware
 finish_time_no_overlap
 start_time_no_data_aware

normal load heavy load

Av
er

ag
e

Tu
rn

ar
ou

nd
 T

im
e(

Se
co

nd
s)

0

1000000

2000000

3000000

4000000

Figure 10. Comparison of average turnaround
time for the three schemes – SDSC trace with

50% of the jobs having data requirements in the
range of 10 MB to 800 GB.

D. Impact of Varying Data Requirements
 Figure 8 compares the performance of the three
schemes for varying data transfer requirements.
We observe that the average turnaround time for
our scheme remains flat for various data
requirement ranges. This implies that almost all of
the data movement can be overlapped with the
queuing time and the computation time for the
CTC trace, with 50% of the jobs having data
movement needs and the data sizes ranging up to
800 GB.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ut
iliz

at
io

n

 finish_time_data_aware
 finish_time_no_overlap
 start_time_no_data_aware

normal load heavy load

Figure 11. Comparison of CPU utilization for the
three schemes – SDSC trace with 50% of the

jobs having data requirements in the range of
10 MB to 800 GB.

 Figure 9 compares the performance of the three
schemes for varying percentage of jobs that require
data movement. We note that the average turn-
around time with our scheme increases as the
percentage of jobs requiring data transfer in-
creases. The performance difference is biggest
when all the jobs have data movement needs.
 Because of space limitations, we show only the
average turnaround time and processor utilization
data for the SDSC trace. As noted from Figures 10
and 11, the trends are similar to that of the CTC
trace.

V. CONCLUSIONS AND FUTURE WORK
 We have explored the issue of scheduling data-
intensive jobs using job traces from supercomputer
centers. We have proposed an adaptive data-aware
scheduling scheme that takes into account not only
computation requirements but also data require-
ments when making scheduling decisions. More-
over, our scheme is able to overlap the data
transfer time of a job with its own queuing time
and other jobs’ computation time. Trace-based
simulation demonstrates that our proposed scheme
provides significant improvements in average
turnaround time and worst-case turnaround time
for the jobs. It also provides better utilization of
computational resources.

 We plan to explore how data transfer failures,
common in distributed environments, affect the
scheduling decisions of our scheme. We also plan
to research workflow applications that consist of
multiple data-intensive jobs. The scheduler should
schedule the jobs that share data to the same
computational site. We intend to incorporate our
scheme into a real metascheduler, conduct experi-
ments using real applications, and analyze the
results. While doing so, we will integrate our
metascheduling scheme with data cache and data
replication services in the Grid, in order to
optimize the scheduling decision process further.

Acknowledgements

REFERENCES

. This work was supported in
part by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Dept.
of Energy, under Contract DE-AC02-06CH11357,
and in part by the National Science Foundation’s
Community Driven Improvement of Globus
Software (CDIGS) project.

[1] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger,
K. Stockinger, Data Management in an International Grid
Project, in 2000 Intl. Workshop on Grid Computing
(GRID 2000), Bangalore, India, December 2000.

[2] T. Kosar, A New Paradigm in Data Intensive Computing:
Stork and the Data-Aware Schedulers, in Proc. of
Challenges of Large Applications in Distributed
Environments (CLADE 2006) Workshop, in conjunction
with HPDC 2006, pp. 5-12, Paris, France, June 2006.

[3] I. Foster, C. Kesselman, and S. Tuecke, The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.
International Journal of High Performance Computing
Applications, 15 (3): 200-222, 2001.

[4] Oliver Wäldrich, Philipp Wieder, and Wolfgang Ziegler,
A Metascheduling Service for Co-allocating Arbitrary
Types of Resources, in Proc. of the 6th International
Conference, Parallel Processing and Applied
Mathematics, PPAM 2005,, volume 3911 of LNCS,
Springer, pages 782-791, Poznan, Poland, September
2005.

[5] V. Subramani, R. Kettimuthu, S. Srinivasan, and P.
Sadayappan, Distributed Job Scheduling on
Computational Grids Using Multiple Simultaneous
Requests, in Proc. of the 11th IEEE Symposium on High
Performance Distributed Computing (HPDC 2002), pages
359- 366, Edinburgh, Scotland, July 2002.

[6] O. Wäldrich, P. Wieder, and W. Ziegler, A
Metascheduling Service for Co-allocating Arbitrary Types
of Resources, pages 782–791 in Parallel Processing and
Applied Mathematics, LNCS 3911, Springer Verlag,
2005.

[7] K. Ranganathan and I. Foster, Decoupling Computation
and Data Scheduling in Distributed Data Intensive
Applications, presented at International Symposium for
High Performance Distributed Computing (HPDC-11),
Edinburgh, 2002.

[8] S. Park and, J. Kim, Chameleon: A Resource Scheduler in
a Data Grid Environment, in Proc. of the 3rd IEEE/ACM
International Symposium on Cluster Computing and the
Grid (CCGrid’03), pages 253-260, Tokyo, Japan, 2003.

[9] J. Bent, D. Rotem, A. Romosan, and A. Shoshani,
Coordination of Data Movement with Computation
Scheduling on a Cluster. In Workshop on Challenges of
Large Applications in Distributed Environments
(CLADE2005), pages 25–34, Research Triangle Park,
NC, July 2005.

[10] S. Venugopal, R. Buyya, and L. Winton. A Grid Service
Broker for Scheduling Distributed Data-Oriented
Applications on Global Grids, in Proceedings of the 2nd
Workshop on Middleware in Grid Computing (MGC 04),
Toronto, Canada, ACM Press, Oct. 2004.

[11] A. Jones and L. C. Rabelo, Survey of Job Shop
Scheduling Techniques, Technical report, NISTIR,
National Institute of Standards and Technology,
Gaithersburg, MD, 1998.

[12] Peter Brucker. The Job-Shop Problem: Old and New
Challenges, in Proc. of the 3rd Multidisciplinary
International Conference on Scheduling: Theory and
Applications (MISTA), pp. 15-22, Paris, France (28-31
August 2007).

[13] Ioan Raicu , Yong Zhao , Ian T. Foster , and Alex Szalay,
Accelerating Large-Scale Data Exploration through Data
Diffusion, in Proc. of the 2008 International Workshop on
Data-Aware Distributed Computing, pp.9-18, Boston,
MA, June 24-24, 2008.

[14] http://www.storkproject.org/
[15] http://www.gridway.org/
[16] http://www.cs.wisc.edu/condor/dagman/
[17] D. Lifka. The ANL/IBM SP Scheduling System, in

JSSPP, pages 295–303, 1995.
[18] A. W. Mu’alem and D. G. Feitelson, Utilization,

Predictability, Workloads, and User Runtime Estimates in
Scheduling the IBM SP2 with Backfilling, in IEEE
Transactions on Parallel and Distributed Computing,
12:529–543, 2001.

[19] D. Perkovic and P. J. Keleher. Randomization,
Speculation, and Adaptation in Batch Schedulers. Cluster
Computing, 3(4):245–254, 2000.

[20] http://www.cs.huji.ac.il/labs/parallel/workload/
[21] Cynthia Bailey Lee, Yael Schwartzman, Jennifer Hardy,

and Allan Snavely. Are User Runtime Estimates
Inherently Inaccurate? In Proc. of 10th Job Scheduling
Strategies for Parallel Processing, June 2004.

[22] Walfredo Cirne and Fran Berman, A Comprehensive
Model of the Supercomputer Workload, in Proc. of IEEE
4th Annual Workshop on Job Scheduling Strategies for
Parallel Processing. Cambridge, MA. 2001.

[23] perfSONAR:
[24] NWS:

www.perfsonar.net/
http://nws.cs.ucsb.edu/ewiki/

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science
laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains
for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in
said article to reproduce, prepare derivative works,
distribute copies to the public, and perform
publicly and display publicly, by or on behalf of
the Government.

http://www.storkproject.org/�
http://www.gridway.org/�
http://www.cs.wisc.edu/condor/dagman/�
http://www.cs.huji.ac.il/labs/parallel/workload/�
http://nws.cs.ucsb.edu/ewiki/�

	Introduction
	Related Work
	Proposed Scheduling Scheme
	Performance Evaluation
	Experiment Setup
	Evaluation Results
	Impact of Accuracy of User Estimation Runtime
	Impact of Varying Data Requirements

	Conclusions and Future Work
	References

